
Architecture Design of Area-Efficient SRAM-Based
Multi-Symbol Arithmetic Encoder in H.264/AVC

Yu-Jen Chen, Chen-Han Tsai, and Liang-Gee Chen
Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan

{yjchen, chtsai, lgchen}@video.ee.ntu.edu.tw

Abstract- The first SRAM-based multi-symbol arithmetic en- CABAC
coder was proposed in this paper. Since several SRAM problems syntax
arise in this highly data-dependent operation, four methods element BinarizationymboB
were introduced to make it feasible. Based on data-forwarding index Arithmetic bitstream
architecture, modular banks with throw-backward/catch-forward iCnex ontext

AritetiCoding
and read/write isolation greatly enhanced the throughput. Our side Modeling bypass
SRAM-based approach was implemented with 29%-35% of information
area compared to register-based design. Moreover, different
throughput required in various applications could be attained
by changing the number of SRAM banks. The proposed SRAM- Fig. 1. Block diagram of H.264/AVC CABAC
based multi-symbol arithmetic encoder achieved high throughput
and low cost at the same time. MPS

I. INTRODUCTION KrangeLPSO

H.264 [1] is a state-of-the-art video coding standard. It range LePSII range2rangeo~
attains high quality with relatively low bit-rate. Context-Based range,
Adaptive Binary Arithmetic Coding (CABAC), the entropy 10IoW2
coding adopted in main and high profiles, contributes signifi- low_ low, (renormalization)
cant bit-rate savings. Fig. 1 shows its block diagram. Syntax
elements (SE) are the data to be coded. Side information is Fig. 2. Conceptual arithmetic coding in H.264/AVC
mostly the knowledge of neighboring coded blocks. SEs are
transformed into binary symbols for binary arithmetic coding.
To achieve adaptive effect, symbols are classified into many ory. Compared with 17 ctxs in JPEG2000, 460 ctxs in H.264
categories, i.e. contexts (ctx), which are modelled based on is incredibly large. The huge amount of {state, MPS} memory
SE type, side information and bin index. Symbols with the is a whole new problem first arising in H.264. Furthermore,
same ctx have similar statistic property and share the adaptive for high-end applications, e.g. HDTV, high-throughput AE
probability state. Besides normal arithmetic coding, bypass increases the hardware costs greatly. In our previous work [2],
mode is introduced to speed up encoding process. Then, binary the architecture of multi-symbol AE successfully achieves high
symbols along with associated ctxs and bypass flags are passed throughput, but its huge area is still a problem.
to arithmetic encoder (AE). Finally, bitstream is generated. To find an area-efficient solution, the area profiling of the

Arithmetic coding is a recursive subdivision scheme of an architecture in [2] is analyzed first, as shown in Fig. 3.
interval, which is specified by range and low. The binary State stages occupies about 95% of area in one-, two-, and
symbol is regarded as either the Most Probable Symbol (MPS) four-symbol conditions. As expected, the huge {state, MPS}
or the Least Probable Symbol (LPS). First, the probability memory is the area-dominant part. The major work of state
state, composed of {state, MPS}, is acquired according to the stage is to read {state, MPS} from memory, update {state,
ctx of symbol. Depending on the symbol equals MPS or not, MPS}, and then write back to memory. In [2], the {state,
next interval is updated as one of two sub-intervals, as shown MPS} memory is implemented by use of registers, which has
in Fig. 2, where rangeLPS depends on state and range. several drawbacks. Firstly, lots of scattered registers and com-

In this paper, an area-efficient SRAM-based multi-symbol plex wires enlarge the area considerably. Secondly, register-
AE is proposed. The motivation and challenges of this work based architecture introduces additional 460 comparators and
are discussed in Section II and III. The architecture is devel- multiplexers. Thirdly, all the 460 {state, MPS} data can be
oped in Section IV. Section V shows implementation results accessed in one cycle, but only a few of them (equals the
and comparisons. Section VI is the conclusion, number of encoded symbols per cycle) are in use. This is quite

a waste. Therefore, register-based architecture is unsuitable
II. MOTIVATION OF SRAM-BAsED AE for AE application. On the contrary, SRAM is much more

CABAC in H.264 uses 460 ctxs to attain accurate probability compact than registers, about 30% of area only. Thus, we
estimation, and each ctx stores one {state, MPS} pair in mem- choose SRAM as {state, MPS} memory in this work.

0-7803-9390-2/06/$20.00 ©2006 IEEE 2621 ISCAS 2006

1-symbol 2-symbol 4-symbol I

\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I l l l l l l I
Encode symbol, AG read update', writel

96.8%95.2% 94.6% ~~~~~ ~~~~~~~Idle AC,I I I-aoStatestage Idle Ir
Other stages Idle -Gtt 1 rcad- Iu lak t

Encode symbol2 I AG read update iwriteI

Fig. 3. Area profiling

Fig. 5. Bubbles in SRAM-based AE

T rTaddr
addr SRAM data SRAM IV PROPOSED ARCHITECTUREIJ LLLJ updated data * I

lW l-W L-W In the design of SRAM-based multi-symbol AE, the key
point is to access the up-to-date {state, MPS} in time and(a) (b) also attain high throughput. This section focuses on this key

Fig. 4. Block diagram of (a) SRAM read (b) SRAM wfite point only. Other parts of AE adopt multi-symbol architecture
in [2].

III. CHALLENGES OF SRAM-BASED AE A. SRAM-Based One-Symbol AE
SRAM is quite efficient in area, but it has two fatal problems The only problem in one-symbol case is the two bubbles

when applied in AE, a highly data-dependent process. Two between working cycles (Fig. 5). To remove the two bubbles,
main challenges of SRAM-based AE are described as follows, the latest {state, MPS} shall be available in the two idle cycles

even if these ctxs are the same. The proposed solution is data-
A. Bubbles forwarding, i.e. to store data for the use in the near future.

In general, registers are inserted at both input and output The architecture is shown in Fig. 6. There are two paths to
of SRAM read/write to assure enough drive strength. This access {state, MPS}. One is SRAM path, and the other is
is shown in Fig. 4, where the SRAM read/write is negative- register path. Normally, if the ctx of current symbol is different
edge-triggered. Due to the use of SRAM, the work in state from its prior two ctxs, it gets {state, MPS} from SRAM
stage takes four cycles, i.e. Address Generation (AG), SRAM path successfully. Otherwise, data-forwarding is performed.
read, update and SRAM write. Fig. 5 shows the data-dependent The up-to-date {state, MPS} is fed into register path in either
bubbles in state stage. Before symbol, finishes SRAM write, AG or read stage, and then the data in register path is selected
the incoming symbols with the same ctx can not read the up- in update stage (Fig. 6). When the type of a symbol is bypass
to-date data from SRAM. For this reason, it needs to idle two or termination (ctx=276), register path is also selected because
cycles after working one cycle. In contrast with register-based its {state, MPS} is constant and unnecessary to be accessed
AE, the two bubbles degrade the throughput to 1/3. from SRAM. Data-forwarding architecture guarantees that

whatever the ctxs are, all symbols can get correct {state, MPS}
B. Insufficient ports without idle cycles. Therefore, the throughput of 1/3 symbol

In s-symbol AE, s data are read from SRAM, and another per cycle is greatly improved to one symbol per cycle with
s updated data are written to SRAM in the same cycle, so in very little area overhead, roughly two {state, MPS} registers,
total 2s ports is required. But in general, at most two-port two ctx comparators, and three multiplexers.
SRAM is available. Two ports are sufficient for one-symbol The architecture in Fig. 6 can be simplified to the symbolic
AE only. Limited to the number of ports, high processing representation in Fig. 7 (a). A, B, C, and D in Fig. 7 (a)
rate of multi-symbol AE is cancelled by the throughput correspond to those in Fig. 6. In AG stage, ctx ofA is compared
degradation. to its prior two ctxs (ctxs of B and C). Depending on this

result, when it is shifted to update stage two cycles later, C
Some literature of H.264 AE does not implement or partially is either read from SRAM (SRAM path) or shifted from B

implements state stage [3][4]. Previously mentioned multi- (register path). C is taken to look up rangeLPS for remaining
symbol AE [2] includes complete state stage, but suffers from AE procedure. If ctx of C equals ctx of A or B, D (the update
huge area of {state, MPS} registers. In [5], SRAM-based one- of C) is passed to A or B. To avoid too complicated figures,
symbol AE is proposed. However, it encodes at most one the following discussion on multi-symbol AE is based on this
symbol per cycle under the limitation of SRAM ports. Besides, symbolic representation.
because of SRAM bubbles, its throughput in average drops to
1/3 symbol per cycle, which is quite insufficient in high-end B. SRAM-Based Multi-Symbol AF
applications. Up to now, AE with both high throughput and Besides data-dependent bubbles, the problem of insufficient
low cost does not show up. Therefore, to meet the needs of ports arises in multi-symbol AE. Thus the throughput in
various applications, this paper is devoted to the design of an every cycle is not constant any more. For s-symbol AE, the
area-efficient SRAM-based multi-symbol AE. encoded symbols per cycle range between one and s, so the

2622

I I I ~ ~ ~~~ ~ ~~~~~~I I I I

AG stage read stage update stage write stage AG read Iupdate AG read uupdate

ctxCtX3CtX2 10 ctx B c ~~~~~~~AlA2 .. 4, B1 B2 .. ,C1 C2 C..

SRMpIh A RAM Iei B |I |2 BIW 2
SKAMpath se? lupdate o.. update

4- count~~~~~~~~~~~~~~~~~~~on

1{63,0} AI+ write num
Registerpath :' s B

II1 sh,if= 1 shift = min (read num, write_num)
{state,MPS}W S (a)

I * bypass, termination or I

the same etx as any ot prior two
Fig. 7. Symbolic representation of (a) one-symbol (b) multi-symbol AE

Fig. 6. Data-forwarding architecture in SRAM-based one-symbol AE

hardware implementation. To meet the two requirements, the
formation of ctxs shall be investigated first. Ctx is the sum

average throughput is far below s. Based on data-forwarding of ctxldxOffset, ctxldxBlockCatOffset, and ctxldxlnc [1]. Ctxs
architecture, several methods are proposed to enhance the of neighboring symbols usually differ from each other on
throughput. ctxIdxIncs only, and the latter ctxIdxInc is often greater than

1) Data-forwarding architecture: Fig. 7 (b) is the symbolic the former by one. From this observation, ctxs of neighboring
representation of SRAM-based s-symbol AE. In AG stage, ctxs symbols tend to scatter in different modular banks, i.e. every
of Al-A, are compared to those prior to them. For example, ctx is assigned to (ctx % b)-th bank if b banks are adopted.
A2 should be compared to ctxs of A3-As, Bi-Bs, and Ci-Cs Due to the regularity and fitness for ctx formation, we choose
If the ctx differs from all preceding ctxs, it gets {state, MPS} modular banks to partition ctxs.
from SRAM path two cycles later. Otherwise, it is ensured 3) Throw-backward/catch-forward: Besides removing idle
getting {state, MPS} from register path sooner or later because cycles, data-forwarding architecture brings another beneficial
Dj-D, are passed backward before leaving update stage if effect. When two ctxs are the same, the former throws updated
any same ctxs follow them. When a ctx equals more than one {state, MPS} backward, and the latter catches it. Since the
prior ctx, it accepts {state, MPS} from the nearest (latest) one. former {state, MPS} is thrown backward, it is unnecessarily
Again, data-forwarding architecture removes two idle cycles written to SRAM, which can save the use of write port; since
in multi-symbol AE. the latter ctx catches forward {state, MPS}, it unnecessarily

2) Modular banks: The remaining problem is insufficient read data from SRAM through a read port. There is great
SRAM ports. How SRAM ports affects the throughput is probability of the same ctxs between neighboring symbols in
explained as follows. In Fig. 7 (b), symbols of Al-A,/Dl- H.264. Dealing with this situation is originally troublesome,
D, are defined as readablelwritable if they can access SRAM but now it becomes an advantage of suppressing port demand,
read/write ports or exploit register path. Of course, the prior and thus reducing the occurrence of collisions.
symbols have higher priority to access SRAM ports. Read_num 4) Read/write isolation: The throughput (shift) is the min-
in Fig. 7 (b) is the number of consecutive readable sym- imum of read_num and write_num. Unfortunately, they may
bols counted from A, to left; write_num is the number of be very different in a cycle, which degrades the throughput
consecutive writable symbols counted from D, to left. The drastically. The solution is to isolate read/write operation
throughput in current cycle, shift in Fig. 7 (b), is the minimum in AGlupdate stage respectively, regardless of the condition
of read_num and write_num to guarantee that {state, MPS} of the other side. Whatever shift is, we read and write as
is always available before or in update stage, and updated many symbols as possible, some of which are prepared for
{state, MPS} is always ready to be written to SRAM before future cycles. For example, in four-symbol AE, if A4 and
leaving update stage. Except register path, most symbols have A1 are readable (read num=l), and D4, D3, and D1 are
to read from and write to SRAM. Therefore, the problem of writable (write_num=2), the throughput in this cycle is only
insufficient SRAM ports degrades the throughput seriously. one. Obviously, all three data can be written to SRAM or
The direct approach to increase SRAM ports is to partition backward registers safely. Besides A4, we can also read A1

460 ctxs into several SRAM banks. If two-port SRAM is used, from SRAM in advance even if any preceding ctx is equal
b banks have 2b ports, which seems sufficient for b-symbol to the ctx of A1, because it is possibly overridden by the
AE. However, since each bank has only one read port and one correct value before or in update stage. As a result, read/write
write port, collision occurs when more than one ctx has to isolation tends to increase the throughput in future cycles.
read from or write to the same bank concurrently. Frequent
collisions reduces readable and writable symbols, leading V. IMPLEMENTATION RESULTS
to great throughput loss. Therefore, it is very important to In Section IV, four methods are proposed to overcome
find an adequate partitioning method to lower the probability challenges of SRAM and improve the throughput. Data-
of collisions. In addition, regular methods are preferred in forwarding architecture removes data-dependent bubbles.

2623

2-symbol AE 4-symbol AE 2-symbol AE 4-symbol AE

405\ Form(176xl 44)70 35 Foreman(176x144) 60 Foreman(176x144)
60-Toshiba(720o 30 80 Toshiba(720x480)X0j 50 Toshiba(720Ox480)

oa320 x::s --B-R(1 K I4o7 4S Raven(1 280Ox720) Ra(128Ox720)

o 15 1 ,=~~~~~~~~~~20 0osIhiba(720x480)j1 Q°2

O 10 Raven(1280x720) 21 Reoeo(120o72_.
200

1 2 1 2 3 4 5 6 1 2 34S678 9 10

b (number of banks) b (number of banks) b (number of banks) b (number of bmks)

(a) (b) (a) (b)

Fig. 8. Performance of modular banks only in (a) 2-symbol (b) 4-symbol Fig. 10. Performance of modular banks with throw-backward/catch-forward
AE and read/write isolation in (a) 2-symbol (b) 4-symbol AE

TABLE I
2-symbol AE 80 4-symbol AE COMPARISONS OF DIFFERENT WORKS (ALL IMPLEMENTED IN 0.18 ,UM

45
NiFoemanl(1l76x1l44) 70 6 Foreman(lf176x144) lTECHNOL40o 17~ 0 -~(161)TECHNOLOGY)

035 | \ -Toshiba(720x480) --60 Toshiba(720x480)

25 \ Rwelsf1280X770) 5 40 = Raw(128(2) Memory type Symbols/cycle Gate count Critical path
15 O | ,20[5]-1 SRAM 1/3 3.8ns
5 10 [2]-1 Register 1 45.8K 2.4ns

2 [2]-2 Register 2 61.4K 3.1ns
1 2 3 4 S 6 1 2 3 4 S 6 7 8 9 10

b (numberofbanks) b (numberofbanks) [2]-4 Register 4 92.9K 5.2ns
Ours- I SRAM 1 13.2K 1.6ns

(a) (b) Ours-2 SRAM 1.84 18.9K 2.9ns
Ours-4 SRAM 3.32 32.1K 5.2ns

Fig. 9. Performance of modular banks with throw-backward/catch-forward
in (a) 2-symbol (b) 4-symbol AE

is four-symbol AE with four banks. The throughput different
from register-based AE is 8.2% and 17%. If higher throughput

Modular banks increase the number of ports and fit ctx forma- is desired, the number of modular banks can be increased. The
tion in H.264. Throw-backward/catch-forward and read/write area of SRAM-based one-, two-, and four-symbol AE is only
isolation move more data to register path, so reduce the use of 29%, 31%, and 35% compared to [2]. Moreover, the critical
ports and enhance the throughput in current and future cycles. paths of one- and two-symbol AE are shortened because in
With these techniques, SRAM-based multi-symbol AE can be [2]-1 and [2]-2, the critical paths fall in register-based state
realized with high precessing rate. stages, which are longer than SRAM-based state stages.
We simulated several sequences from QCIF to HDTV, with

low to high motion. The effects of these four schemes are
presented as follows. Data-forwarding architecture enhances In this paper, the first SRAM-based multi-symbol AE is
the throughput up to three times. The performance of modular implemented. AE in H.264 suffers from huge area of memory
banks is shown in Fig. 8, in which the throughput loss is due to lots of ctxs, so SRAM is used instead of registers.
degradation percent of maximum symbols encoded in a cycle. Several methods are developed to solve SRAM bubbles and
Note that the improvement does not always increase with insufficient ports. Finally, we propose an area-efficient SRAM-
the number of banks, e.g. the degradation of 10 banks in based multi-symbol AE with less than 35% of area compared
four-symbol AE. This is because ctx arrangement between to previous work in one-, two- and four-symbol AE. Also,
different SEs is unsuitable for certain modulus. After throw- different throughput can be achieved by changing the number
backward/catch-forward applied, the results are shown in Fig. of SRAM banks. Besides H.264, the architecture can be
9. Finally, Fig. 10 shows the performance with the help of applied to other standards as well.
both throw-backward/catch-forward and read/write isolation. REFERENCES
In two-symbol AE with two banks, the throughput loss is
reduced from 25%, 16% to 8.2%; in four-symbol AE with [1] Joint Video Team, Draft ITU-T Recommendation and Final Draft

four banks, the throughput loss is reduced from 51% 36% to
International Standard of Joint Video Specification, ITU-T Rec. H.264

four banks, the throughput loss iS reduced from 51%, 36% to and ISO/IEC 14496-10 AVC, May 2003.
17%. The great improvement is quite stable among various [2] C. H. Tsai, Y. J. Chen, and L. G. Chen, "Analysis and architecture design
sequences. for multi-symbol arithmetic encoder in h.264/avc," in Proc. of ISOCC,

2005.
The proposed SRAM-based multi-symbol AE is imple- [3] R.-R. Osorio and J.-D. Bruguera, "Arithmetic coding architecture for

mented in TSMC 0.18 ,um technology. Table I shows the h.264/avc cabac compression system," in Proc. of DSD, 2004.
coprsn wit prviu woks Thi is th fis RM [4] J. L. Nunez and v. A. Chouliaras, "High-performance arithmetic coding

vlsi macro for the h.264 video compression standard," IEEE Transactions
based multi-symbol AE, so only SRAM-based one-symbol AE on Consumer Electronics, vol. 51, no. 1, pp. 144-152, Feb. 2005.
[5] and register-based multi-symbol AE [2] are compared. In [5] H. Shojania and s. Sudharsanan, "A high performance cabac encoder,"
Table I, Ours-2 is two-symbol AE with two banks, and Ours-4 in Proc. of NEWCAS, 2005.

2624

